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A study published in 2013 showed that several different species of test subjects 
grown in sterile environments from birth were less adaptive to stress than their wild 
counterparts. They also expressed higher levels of stress-related hormones, such as 
adrenocorticotropic hormone (ACTH) and corticosterone. Hypoxia-inducible factor 
(HIF) is a pathway that regulates the response to hypoxia and stress. HIF uses the 
gene hif-1a, which is a transcription blocker. The question addressed in this study is 
whether or not the microbiome has an effect on responses to stress that involve this 
pathway. This study used C. elegans strains with mutations in the HIF pathway as a 
model to look at the correlation between microbiome diversity and heat stress 
response. It used four different strains of C. elegans with varying tolerances to heat 
stress. From highest to lowest heat tolerance, these are vhl-1, egl-9, N2, and hif-1, 
where N2 is wild type. These strains were grown on plates with a single strain, two 
strains, or four strains of bacteria to promote varying levels of microbiome diversity 
in the worms. The worms were then incubated, and their response to the 37˚C heat 
stress was recorded. At hour three, the death rate of the vhl-1 and egl-9 worms 
scaled inversely with the diversity of the microbiome. At hour five, the pattern 
changed slightly, as the worms grown on two strains of bacteria had approximately 
15% less death than those grown on four strains. The remaining strains, N2 and 
hif-1, had normal and reduced tolerance, respectively. They both followed roughly 
the same pattern as the other two strains, except that the worms grown on four 
strains of bacteria had approximately 20% less death than those grown on two 
strains. Overall, this suggests that a higher level of microbiome diversity decreased 
the probability of death in response to heat stress response. All four strains also 
showed abnormal behavior when experiencing heat stress, changing from the typical 
sinusoidal movements to repetitious coiling and seizing movements, as recorded in 
digital time lapses. Further studies will investigate how C. elegans with multiple of 
the mutations respond in circumstances similar to those used in this study. An 
enzyme-linked immunosorbent assay will also be utilized to observe levels of the 
stress hormone corticosterone. 
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   The non-sinusoidal movement and accelerated egg laying recorded at hours of 
heat stress are recognized signs of increased stress in C. elegans. The worms were 
likely stressed because of the increased heat and the correlated reduction of 
available oxygen.  
     At hour three, there was a general trend in which the groups with more diverse 
microbiomes had less death than those with less diverse microbiomes. The groups 
grown on only Op50 all had death rates of above 10%, with one as high as 
approximately 35%, whereas the groups grown on all four bacteria all had death 
rates below 10%, with one having 0% death. The only worm mutant that did not 
follow this trend was the hif-1, as the worms grown on two E. coli strains had a 
higher death rate than those grown on only Op50. 
    At hour five, there were higher death rates in all strains than at hour three. The 
same trend of correlation of lower death rates to higher microbiome diversity was 
also present. However, at this later time there was less significant difference within 
the vhl-1 and egl-9 groups. The groups grown on Op50 had death rates ranging from 
approximately 50% to 100%, with three of the four groups above 75%. The groups 
grown on all four bacteria had death rates ranging from approximately 20% to 75%. 
This suggests that the diversity of the microbiomes had a direct effect on the 
tolerance to heat stress. The lowered difference between death rates in the different 
strains at this time could be attributed to the extremity of the temperature and the 
time length.  
    At both hours three and five, vhl-1 and egl-9 had the highest death rate. Egl-9 also 
did not show a significant difference in death rate between the control bacterial 
group and the experimental groups at hour five. This is contrary to what was 
expected, because vhl-1 and egl-9 have mutations that should make them more 
resistant to hypoxia, which is a component of heat stress. Heat tolerance is not 
wholly dependent on the HIF pathway, so there could be other factors at play. It is 
also possible that the hypoxia level created by the heat and CO2 in the incubator was 
not significant enough for the mutants to be affected differently than wild type. The 
Caenorhabditis Genetics Center at the University of Minnesota states that the hif-1 
mutant has the most significant difference from wild type in conditions of 1% 
oxygen. 
     Further experimentation will be done to determine the roles different mutations 
play in the results by repeating the experiment with worms that have multiple of the 
mutations used. To determine whether it is the combination of bacteria or the 
individual probiotic strains that contribute most to the decreased stress response, the 
worms will be grown on each strain of bacteria individually. To understand the role 
of hormones in this experiment, an enzyme-linked immunosorbent assay (ELISA) 
will also be performed to observe the role of corticosterone in the stress response 
that is being exhibited. 
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Figure 2 shows the percent death observed for each combination of worm strain and 
bacterial mix after five hours of heat exposure. Each bar is the average of three plates 
that contained approximately 50 worms each. The groups with more diverse 
microbiomes exhibit less death than those with one or two bacterial strains. ANOVA 
tests were performed between the bacterial groups of each strain. Vhl-1 had a p-value 
of 0.01107, egl-9 had a p-value of 0.18388, N2 had 0.01477, and hif-1 had 0.20409. 
These show that there was a significant difference within the vhl-1 and N2 strains.  
 

The above graph shows the percent death observed for each combination of worm 
strain and bacterial mix after three hours of heat exposure. Each bar is the average of 
three plates that contained approximately 50 worms each. A trend can be seen on this 
graph where the groups with more diverse microbiomes have less death. ANOVA tests 
were performed among the bacterial groups within each strain. Vhl-1 had a p-value of 
0.05125, egl-9 had a p-value of 0.07949, N2 had 0.0057, and hif-1 had 0.46759. These 
show that there was a significant difference within all groups except for hif-1.  
 

The behavior of the C. elegans 
was observed and recorded 
immediately after two hours after 
being incubated at 37˚C. All 
worms displayed the typical 
sinusoidal movement prior to heat 
shock. At two hours, worms in all 
groups began to display abnormal 
behaviors such as thrashing, 
rolling, moving back and forth, 
and moving only one half of their 
bodies. The worms also laid eggs 
at an accelerated rate during the 
heat exposure. These eggs were 
observed for several days, and 
many of them did not hatch. 
Though not quantified, both the 
change in movement and the 
accelerated egg laying indicate a 
stressed state.  

These photos show C. elegans strains 
hif-1 and egl-9 that had been exposed 
to heat stress for two hours.   

lb 

C. elegans is a nematode commonly 
used as a test organism in scientific 
studies. It serves well as a model 
organism because of its fully 
mapped neurological system, its 
completely sequenced genome, its 
consistent number of adult somatic 
cells, and the availability of 
hundreds of mutant strains (Edgley 
2015). In the lab, C. elegans is 
grown on plates of nutrient agar 
typically seeded with one of two 
non-pathogenic strains of E. coli as a 
food source.  

The microbiome is the collection of living organisms living on or in an organism 
(Rea et al. 2016). Of particular interest to this study are those that populate the 
gut. The microbiome consists of bacteria, Archaea, fungi, and viruses. The 
majority of the microbes in the microbiome can be found in the gastrointestinal 
tract; they are also commonly found on the genitals and skin. The microbiome 
has been shown to have a substantial role in regulating the immune system 
(Round and Mazmanian 2009). As the C. elegans diet consists largely of bacteria 
in the wild, the microbiome may also play an important role in the worms’ life 
and stress response. For example, serotonin also plays a role in the stress 
response of C. elegans. The goal of this research is to test whether diversifying 
the microbiome of laboratory strains of C. elegans will enhance their resistance 
to heat stress.  
 

This study utilized three of the hif-1 mutant C. 
elegans strains: vhl-1 (OK161), egl-9 (N571), and 
hif-1 (IA4). Vhl-1 is a gene that promotes the 
degradation of hif-1. The first two strains result in an 
increased tolerance to hypoxia. The vhl-1 mutant has 
a deletion of the vhl-1 gene, meaning that the hif-1 is 
no longer being degraded. Egl-9 is a gene that 
negatively regulates hif-1. The egl-9 mutant has a 
substitution for egl-9.  
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Figure 1 shows the 
sterile hood in 
which the media and 
bacteria used in the 
experiment were 
prepared. In the 
hood are containers 
of Luria Broth (LB) 
in which the bacteria 
were suspended. 

Figure 2 shows two 
vials which contain 
the Lactobacillus 
acidophilus used in 
the experiment. 

Figure 3 shows the 
microscope used to 
observe the C. 
elegans after they 
were exposed to 
heat stress.  

Figure 4 shows 
plates of C. 
elegans used in the 
experiment. The 
labels represent 
different bacterial 
mixes. The grids 
were used to 
increase accuracy 
when counting the 
worms. 


